PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Wetting at nonplanar substrates: Unbending and unbinding
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We consider fluid wetting on a corrugated substrate using effective interfacial Hamiltonian theory and show
that breaking the translational invariance along the wall can indueenbandingphase transition in addition
to unbinding. Both first-order and second-order unbending transitions can occur at and out of coexistence.
Results for systems with short-ranged and long-ranged forces establish that the unbending critical point is
characterized by hyperuniversal scaling behavior. We show that, at bulk coexistence, the adsorption at the
unbending critical point is a universal multiple of the adsorption for the correspondent planar system.
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Recently, the subject of fluid adsorption and wetting on To begin, we describe the results of a specific mean-field
structured(nonplanay and heterogeneous substrates has betMF) model of unbending and unbinding which also serves
gan to receive considerable attentid. This work is not  to illustrate important scaling properties which we shall later
only a natural extension of studies of wetting on idealizedput in a more general context. For simplicity, we assume that
planar surfacef] but it is also of more fundamental interest the wall has a corrugated sinusoidal sha@ge) = a cos(x),
since the broken translational invariance along the wall necwhich breaks the translational invariance in one direction
essarily leads to competition between surface tension an@ly. Following the work of earlier authofd,3], we take as
direct molecular effects. Thus, we may anticipate that newPur starting point théreduced standard effective interfacial
interesting phenomen@hase transitions, scaling, universal- Model
ity) will emerge which do not occur for planar systems. In 1 s [ gl
this paper, we report results of extensive numerical calcula- H[I]= _f dx _<_ +W(l— ) } )
tions, supported by approximate nonperturbative analysis L 2\ ox
and scaling theory, of wetting on a periodaorrugateg sub- . o ) o )
strate. These reveal that first- and second-order transitiof€Stricted to the space of periodic solutions which is suffi-
can take place, directly related to the inhomogeneity alon lent for our des.,cnptlon'of equ|'I|br.|um phengmena. H%Ee'
the wall. For long-ranged forces, the phase transition, res the surche stn‘fne_swls the bmdmg potent_lal, ank{x) IS
ferred as unbending, only occurs for sufficiently large wallthe coIIec_tlve coordinate measuring the height of the Inter-
) : face relative to the mean position of the wall whose petiod
corrugationgbeyond the range of previously employed per- ..~ .~ " .
turbative method§3]), dependent on the wave vector of the sat!sfl_esq_—ZTr_/L. we als_o_ rt_astrlct Ol_Jrseres to a MF de-
. ' ... _scription in which the equilibrium profilels, are obtained by
corrugatlo_n. In contrast, for short-ranged forces, the critica inimizing Eq. (1). The importance of fluctuation effects
threshold is wave vector independent and rather yveak. _Thegﬁi” be discussed later in the context of scaling thef8y.
are three aspects of our work that we emphasize in particulaye start by considering systems with short-ranged forces at
Flrst, the_l.mbendlng. transnlor_] precedes a wetfiagbind- |k two-phase coexistence and wijg
ing) transition occurring at a higher temperatgaad at bulk
two-phase coexistengeFor second-order unbinding transi- W()=—ATe '+Be? 2
tions, on which we concentrate, the location of the wetting
transition is unaffected by wall corrugation. Second, the lo-so that both the film thicknedsand corrugation amplitude
cation of the unbending line and critical point, as well as theare measured in units of the bulk correlation length. With
interface structure, only depend on the amplitude and periothis potential(and positiveB) the planar system undergoes a
of the wall corrugation function through hyperuniversal scal-second-order unbinding transition AfT=T,,—T=0 such
ing variables analogous to that encountered in the theory dhat the MF interface thickness and the transverse correlation
finite-size effects at bulk critical pointg4]. As a conse- length diverge at that critical point dg~ —In(AT) and ¢
quence, the unbending critical point is associated with non~AT™ !, corresponding to standard wetting critical expo-
trivial universal amplitude ratios which relate the adsorptionsnents3s=0(In) andy =1 respectively2].
in the nonplanar and correspondent planar system. Finally, Fora=#0, the MF configuratio(s) are the solutions of the
unbending is directly related to nonlinear bifurcation phe-Euler-Lagrange equation
nomena occurring in dynamical systems, a subject whose
mathematical aspects continue to attract atter{tidn SIT(X)=W'(l,—¢), 3

solved subject to periodic boundary conditions and where the
*On leave from the Departamento desiEa Teoica de la Materia  prime denotes differentiation with respect to the argument.
Condensada, Universidad Amoma de Madrid. This deceptively simple looking nonlinear equation can show
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FIG. 1. Film thickness vaT for different values of from the FIG. 2. Section of the surface phase diagram at bulk coexistence

numerical minimization of Eq(1). From below,a/\2=0.00, 0.50, showing the unbending coexistence line which finishes at the criti-
1.00, 1.50, 1.75, 1.90, 2.0605, 2.10, 2.15, 2.20, 2.25, 2.30. AlFal point AT~2.12 anda,~2.914. The solid line represents the
distances are measured in units of the bulk correlation length. ~ results of minimizing Eq(1). The dashed line is the result of the
variational approximate solutiofsee text The vertical lineAT
multiple solutions and bifurcations corresponding to differ-=0 represents the second-order unbinding transition. Schematic
ent possible phases for the equilibrium interface configuratepresentation of the interfacial configuration on either side of the
tion. While a full analytic solution is not possible, it is unbending line are also shown.
straightforward to show that the solutions exhibit an impor-
tant scaling property which allows us to collapse results obterface displacement while measures the extent of interfa-
tained for different periods = 27/q onto a universal surface cial corrugation. The bounding value=1 corresponds to a
phase diagram. To see this, we introduce the new variablegpmpletely flat configuration whereas-0 refers to a con-

n=|—y—1_ andt=q x so that Eq.(3) becomes figuration with identical corrugation to the wall. Substituting
this parametrized profile shape into the Hamiltonian, &y.
n=AT2(e 7—e 27 +acost, (4)  and minimizing with respect t,, we are led to the follow-

ing approximate expression for the dependence of the free-

which is the equation of a forced inverted nonlinear oscilla-energyF on the interface corrugation parameter

tor. Here the overdot corresponds to differentiation with re-

spect tot while the temperature, stiffness, and substrate pe- a ) ) |g( €a)

riodicity are combined in the rescaled temperature variable E—qu(f): S (1-e)"—A Iy(2€a)’ ®

AT=AT/qy2B3. Consequently, any new phase transition

induced by the corrugation amplituags not affected by the  \ynerel , denotes the modified Bessel function of zero order.
value of the wall periodicityy which only acts to rescale the The two terms on the right-hand side represent the competi-
temperature deviation from,, . In Fig. 1, we show plots of  tjon between the surface tension and binding potential effects
the mean interface thickneds, defined as the average which are each minimized separately & 1 (flat interface
(I(x))x, as a function ofAT for variousa, obtained by nu- ande=0 (corrugated interfage respectively. Plots oF (€)
merically minimizing Eq.(1). It can be seen that while the for variousa moving along the unbending line are shown in
location of the unbinding transition is unaffected by the wallFig. 3 and illustrate the possibility of phase coexistence be-
corrugation, a new phase transition occurs for corrugationween bent and rather flat states for sufficiently laag&@he
amplitudesa>a,~2.914 andAT>AT.~2.12. The surface locus of the unbending transition in the surface phase dia-
phase diagram is shown in Fig. 2 and exhibits the terminagram obtained in this approximate manner is shown as the
tion of the first-order phase boundary at an unbending criticaflashed line in Fig. 2 and agrees reasonably well with the
point as well as representative shapes of the coexisting inteexact numerical result. Note that the solutions will only de-
facial phases at the transition. Again, we emphasize the unpend onAT anda, as in the exact solution. This method also
versal value of the critical corrugation amplitudggs(which  has a distinct advantage over previously adopted perturbative
is independent of]) while the temperature shift frort,,  treatmentg3] (involving an expansion about the planar sys-
satisfiesAT.(q) =q. tem) which, while not without merit, cannot handle the oc-
Before we discuss further scaling properties that emergeurrence of distinct branchdse., a bifurcation in the free-
from the exact minimization of Eql), we describe an ap- energy[7]. We also note that the location of the unbending
proximate treatment of the model which recovers the un<critical point within this approximate nonperturbative
bending transition and yields relatively good values for themethod can be determined with an elegant graphical con-
critical point. To this end, we suppose that the interface construction[8].
figuration, and consequently the free-energy, can be param- We consider now the same phenomena for systems with
etrized by two variables by restricting ourselves to profiles oflong-ranged(dispersion forces. For this case, we use the
the forml(x)~1y+ (1—€)¥(x). Thus,l is the average in- binding potential2]
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FIG. 3. Free energy from the expressi@n for different values
of a at the transition temperaturdsee Fig. 2 From above,a
=5.0, 4.0, 3.5, 3.0, 2.75, and 2.46866. The last value is the critic
value a, within the present approximation.

FIG. 4. Phase diagram of the unbending transition in a system of
hort ranged forces for different valuesa‘lf\/E: 2.5, 3.0, 4.0 and
.0, from numerical minimization of Eq1) (continuous lines, left
to right). The circle represents the unbending critical point dgr
~2.914. The loci of critical points obtained from the approximate
. AT B model is represented as a broken line. The triangle locates the criti-
Wlh==-—7+3 (6) :
| | cal wetting temperature.

which again describes a continuous unbinding transition inthe unbending critical point occurs f&T # 0, we are imme-
the planar system a&—T,, [2]. For this system, the film diately led to the prediction for the critical corrugation am-
thickness and transverse correlation length divergd as plitude and temperature

~AT !t and§~AT %2 corresponding to critical exponents iy y

Bs=1 andv=>5/2, respectivel§2]. Turning to the nonpla- ag(q)cq sl ATg(q)ecq™ 9
nar geometry, we make the judicial change of variabjes
=(I—¢)/l, and t=qg x which again reduces the Euler-
Lagrange equatiofB) to that of a forced inverted nonlinear
oscillator:

consistent with our explicit results, provided that for short-
ranged forces we interpr@ls/ v as zero and not logarithmic.
For this case, we believe that the existence of a finite critical
threshold even in thg— 0 limit is a surprising finding of our
_ work. These scaling ideas can be extended to the interface
+acost. (7) structure at the unbending critical point where the hyperuni-
versal nature of the scaling variabbesindy play an impor-
. . ~ 4 tant role. Here, we concentrate on systems with long-ranged
Pnce more, the two scaling variablag =2AT/X¢*7 and forces for whichBs#0 where the definition of universal
a=all, determine the multiplicity of solutions and hence critical amplitudes is more straightforward. We suppose that,
the surface phase diagram. _ in the vicinity of the unbending critical point, the mean in-
Plots of the mean interface positibnvs AT for different  terface thickness in the nonplanar system is described by the
a obtained from the numerical minimization of E@) are, in  scaling law
essence, the same as that shown in Fig. 1 for short-ranged
forces and, therefore, are not presented here. The numerical |
values for the scaled variables at the unbending critical point 0
area,~2.061 andAT~8.66 which imply a wave-vector de- . i ] ]
pendenca.(q)=q~2° andAT(q)«q?® for the critical cor- whereA(x,y)_ is a universal scall_ng fu_n_ctlon. As a conse-
rugation amplitude and temperature shift, respectively. quence, precisely at the unbending critical point, the mean
The MF results described above suggest that the locatiofim thicknesslg is a universal multiple of the corresponding
of the unbending critical point can be understood using scalPlanar adsorptiofat the same temperatyr&hus, we define
ing theory. To this end, we suppose that, in the planar syshe universal critical amplitude ratio
tem, the excess free-energy per unit area contains a singular
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a
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contribution FS"9~ AT 27¢s [with ag=0 and —1 for the _ 5 _ _
model potential§2) and(6), respectively 2]]. In the nonpla- T, ata=ax(q), AT=ATc(q), (1)
nar system, we conjecture that the corresponding quantity is
described by the scaling function which we have numerically determined BRs=1.321 (inde-
. pendent ofg) calculated using our MF theory with the bind-
AFSM=AT2 2sW(a ATPs,q AT "), (8)  ing potential(6). Note that the definition dR is equivalent to

the ratio of adsorptions in the nonplanar and planar systems.
whereW(x,y) is the scaling function whose variables corre- Other universal critical amplitudes can also be defined. For
spond to the hyperuniversal combination of lengthscalegxample, at the unbinding critical point, the shift in the mean
all . andqé [9]. Since the singularity in the free-energy at interface height relative to the planar system satisfies
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lg—1-(AT,) the (T,h) plane thus shows both prewetting and unbending
Tala) (12} jines. While this first appears similar to prefillifd] on a
wedge, there are profound and subtle differences between
with R" also independent af. The advantage of this defini- unbending and prefilling relating to the order of these tran-
tion is that it is also appropriate for systems in whiBg  sitions and their relation with wetting8]. In summary, we
=0(In). We have numerically determined thBt =0.640 have shown that for nonplanar systems an additional interfa-
and 0.156 for the potential®) and (6), respectively. cial phase transition is associated with unbinding. The criti-
To finish our article, we make two pertinent remarks. cal point of the unbending transition exhibits scaling and
First, we have established that far-a, the first-order un-  gpservable universal critical properties. Further work should
bending transition also occurs out of the two-phase coexisteoncentrate on more general wall shapes, calculations with
ence for sufficiently small bulk ordering field The result of  more microscopic models and also aim to establish whether
our numerical calculations for short-ranged forces includinghe values of the universal critical amplitudes presented here
an additionalhl term in the binding potential are shown in are substantially affected by including fluctuation effects be-
Fig. 4. The existence of an unbending line extending out ofjond mean-field level. At present, simulation studies seem
bulk two-phase coexistence is analogous to prewetting dsest equipped to answer this latter question although renor-
(planay first-order phase transitions. Secondly, we have esmalization group analysis may be possible.
tablished that unbending also occurs for first-order wetting
transitions in nonplanar systems although the scaling behav- C.R. acknowledges economical support frara Caixa
ior is less obvious. A section of the surface phase diagram iand The British Council.
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