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Wetting at nonplanar substrates: Unbending and unbinding

C. Rasco´n,* A. O. Parry, and A. Sartori
Mathematics Department, Imperial College, 180 Queen’s Gate, London SW7 2BZ, United Kingdom

~Received 23 September 1998; revised manuscript received 13 January 1999!

We consider fluid wetting on a corrugated substrate using effective interfacial Hamiltonian theory and show
that breaking the translational invariance along the wall can induce anunbendingphase transition in addition
to unbinding. Both first-order and second-order unbending transitions can occur at and out of coexistence.
Results for systems with short-ranged and long-ranged forces establish that the unbending critical point is
characterized by hyperuniversal scaling behavior. We show that, at bulk coexistence, the adsorption at the
unbending critical point is a universal multiple of the adsorption for the correspondent planar system.
@S1063-651X~99!05605-6#

PACS number~s!: 68.45.Gd, 68.35.Rh
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Recently, the subject of fluid adsorption and wetting
structured~nonplanar! and heterogeneous substrates has
gan to receive considerable attention@1#. This work is not
only a natural extension of studies of wetting on idealiz
planar surfaces@2# but it is also of more fundamental intere
since the broken translational invariance along the wall n
essarily leads to competition between surface tension
direct molecular effects. Thus, we may anticipate that n
interesting phenomena~phase transitions, scaling, universa
ity! will emerge which do not occur for planar systems.
this paper, we report results of extensive numerical calc
tions, supported by approximate nonperturbative anal
and scaling theory, of wetting on a periodic~corrugated! sub-
strate. These reveal that first- and second-order transit
can take place, directly related to the inhomogeneity alo
the wall. For long-ranged forces, the phase transition,
ferred as unbending, only occurs for sufficiently large w
corrugations~beyond the range of previously employed pe
turbative methods@3#!, dependent on the wave vector of th
corrugation. In contrast, for short-ranged forces, the criti
threshold is wave vector independent and rather weak. T
are three aspects of our work that we emphasize in particu
First, the unbending transition precedes a wetting~unbind-
ing! transition occurring at a higher temperature~and at bulk
two-phase coexistence!. For second-order unbinding trans
tions, on which we concentrate, the location of the wett
transition is unaffected by wall corrugation. Second, the
cation of the unbending line and critical point, as well as
interface structure, only depend on the amplitude and pe
of the wall corrugation function through hyperuniversal sc
ing variables analogous to that encountered in the theor
finite-size effects at bulk critical points@4#. As a conse-
quence, the unbending critical point is associated with n
trivial universal amplitude ratios which relate the adsorptio
in the nonplanar and correspondent planar system. Fin
unbending is directly related to nonlinear bifurcation ph
nomena occurring in dynamical systems, a subject wh
mathematical aspects continue to attract attention@5#.

*On leave from the Departamento de Fı´sica Teo´rica de la Materia
Condensada, Universidad Auto´noma de Madrid.
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To begin, we describe the results of a specific mean-fi
~MF! model of unbending and unbinding which also serv
to illustrate important scaling properties which we shall la
put in a more general context. For simplicity, we assume t
the wall has a corrugated sinusoidal shapec(x)5a cos(qx),
which breaks the translational invariance in one direct
only. Following the work of earlier authors@1,3#, we take as
our starting point the~reduced! standard effective interfacia
model

H@ l #5
1

LEL
dx F S

2 S ] l

]xD 2

1W~ l 2c! G ~1!

restricted to the space of periodic solutions which is su
cient for our description of equilibrium phenomena. Here,S
is the surface stiffness,W is the binding potential, andl (x) is
the collective coordinate measuring the height of the int
face relative to the mean position of the wall whose perioL
satisfiesq52p/L. We also restrict ourselves to a MF de
scription in which the equilibrium profilesl n are obtained by
minimizing Eq. ~1!. The importance of fluctuation effect
will be discussed later in the context of scaling theory@6#.
We start by considering systems with short-ranged force
bulk two-phase coexistence and write@2#

W~ l !52DT e2 l1b e22l ~2!

so that both the film thicknessl and corrugation amplitudea
are measured in units of the bulk correlation length. W
this potential~and positiveb) the planar system undergoes
second-order unbinding transition atDT[Tw2T50 such
that the MF interface thickness and the transverse correla
length diverge at that critical point asl p;2 ln(DT) and j i
;DT21, corresponding to standard wetting critical exp
nentsbS50(ln) andn i51 respectively@2#.

For aÞ0, the MF configuration~s! are the solutions of the
Euler-Lagrange equation

S l n9~x!5W8~ l n2c!, ~3!

solved subject to periodic boundary conditions and where
prime denotes differentiation with respect to the argume
This deceptively simple looking nonlinear equation can sh
5697 ©1999 The American Physical Society
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5698 PRE 59C. RASCÓN, A. O. PARRY, AND A. SARTORI
multiple solutions and bifurcations corresponding to diffe
ent possible phases for the equilibrium interface configu
tion. While a full analytic solution is not possible, it i
straightforward to show that the solutions exhibit an imp
tant scaling property which allows us to collapse results
tained for different periodsL52p/q onto a universal surface
phase diagram. To see this, we introduce the new varia
h[ l 2c2 l p and t[q x so that Eq.~3! becomes

ḧ5DT̃ 2 ~ e2h2e22h!1a cost, ~4!

which is the equation of a forced inverted nonlinear osci
tor. Here the overdot corresponds to differentiation with
spect tot while the temperature, stiffness, and substrate
riodicity are combined in the rescaled temperature varia
DT̃[DT/qA2bS. Consequently, any new phase transiti
induced by the corrugation amplitudea is not affected by the
value of the wall periodicityq which only acts to rescale th
temperature deviation fromTw . In Fig. 1, we show plots of
the mean interface thicknessl 0, defined as the averag

^ l (x)&x , as a function ofDT̃ for variousa, obtained by nu-
merically minimizing Eq.~1!. It can be seen that while th
location of the unbinding transition is unaffected by the w
corrugation, a new phase transition occurs for corruga
amplitudesa.ac'2.914 andDT̃.DT̃c'2.12. The surface
phase diagram is shown in Fig. 2 and exhibits the termi
tion of the first-order phase boundary at an unbending crit
point as well as representative shapes of the coexisting in
facial phases at the transition. Again, we emphasize the
versal value of the critical corrugation amplitudesac ~which
is independent ofq) while the temperature shift fromTw
satisfiesDTc(q)}q.

Before we discuss further scaling properties that eme
from the exact minimization of Eq.~1!, we describe an ap
proximate treatment of the model which recovers the
bending transition and yields relatively good values for
critical point. To this end, we suppose that the interface c
figuration, and consequently the free-energy, can be par
etrized by two variables by restricting ourselves to profiles
the form l (x)' l 01(12e)c(x). Thus, l 0 is the average in-

FIG. 1. Film thickness vsDT̃ for different values ofa from the
numerical minimization of Eq.~1!. From below,a/A250.00, 0.50,
1.00, 1.50, 1.75, 1.90, 2.0605, 2.10, 2.15, 2.20, 2.25, 2.30.
distances are measured in units of the bulk correlation length.
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terface displacement whilee measures the extent of interfa
cial corrugation. The bounding valuee51 corresponds to a
completely flat configuration wherease50 refers to a con-
figuration with identical corrugation to the wall. Substitutin
this parametrized profile shape into the Hamiltonian, Eq.~1!,
and minimizing with respect tol 0, we are led to the follow-
ing approximate expression for the dependence of the f
energyF on the interface corrugation parametere:

2

Sq2 F~e!5
a2

2
~12e!2 2 DT̃ 2

I 0
2~ea!

I 0~2ea!
, ~5!

whereI 0 denotes the modified Bessel function of zero ord
The two terms on the right-hand side represent the comp
tion between the surface tension and binding potential effe
which are each minimized separately bye51 ~flat interface!
ande50 ~corrugated interface!, respectively. Plots ofF(e)
for variousa moving along the unbending line are shown
Fig. 3 and illustrate the possibility of phase coexistence
tween bent and rather flat states for sufficiently largea. The
locus of the unbending transition in the surface phase
gram obtained in this approximate manner is shown as
dashed line in Fig. 2 and agrees reasonably well with
exact numerical result. Note that the solutions will only d
pend onDT̃ anda, as in the exact solution. This method al
has a distinct advantage over previously adopted perturba
treatments@3# ~involving an expansion about the planar sy
tem! which, while not without merit, cannot handle the o
currence of distinct branches~i.e., a bifurcation! in the free-
energy@7#. We also note that the location of the unbendi
critical point within this approximate nonperturbativ
method can be determined with an elegant graphical c
struction@8#.

We consider now the same phenomena for systems
long-ranged~dispersion! forces. For this case, we use th
binding potential@2#

ll

FIG. 2. Section of the surface phase diagram at bulk coexiste
showing the unbending coexistence line which finishes at the c

cal point DT̃'2.12 andac'2.914. The solid line represents th
results of minimizing Eq.~1!. The dashed line is the result of th

variational approximate solution~see text!. The vertical lineDT̃
50 represents the second-order unbinding transition. Schem
representation of the interfacial configuration on either side of
unbending line are also shown.



i

ts

r-
r

e

g
ri

oi
-

tio
ca
y
u

ty

e-
le
at

-

rt-
.
ical

face
ni-

ged
l
at,
-
the

e-
ean
g

-

ms.
For
an

of

te
criti-

tic

PRE 59 5699WETTING AT NONPLANAR SUBSTRATES: UNBENDING . . .
W~ l !52
DT

l 2 1
b

l 3 ~6!

which again describes a continuous unbinding transition
the planar system asT→Tw @2#. For this system, the film
thickness and transverse correlation length diverge asl p

;DT21 andj i;DT25/2, corresponding to critical exponen
bS51 andn i55/2, respectively@2#. Turning to the nonpla-
nar geometry, we make the judicial change of variablesh
[( l 2c)/ l p and t[q x which again reduces the Eule
Lagrange equation~3! to that of a forced inverted nonlinea
oscillator:

ḧ5DT̃ 2 S 1

h3 2
1

h4D1ã cost . ~7!

Once more, the two scaling variablesDT̃[2DT/Sq2l p
4 and

ã[a/ l p determine the multiplicity of solutions and henc
the surface phase diagram.

Plots of the mean interface positionl 0 vs DT̃ for different
a obtained from the numerical minimization of Eq.~1! are, in
essence, the same as that shown in Fig. 1 for short-ran
forces and, therefore, are not presented here. The nume
values for the scaled variables at the unbending critical p
areãc'2.061 andDT̃'8.66 which imply a wave-vector de
pendenceac(q)}q22/5 andDTc(q)}q2/5 for the critical cor-
rugation amplitude and temperature shift, respectively.

The MF results described above suggest that the loca
of the unbending critical point can be understood using s
ing theory. To this end, we suppose that, in the planar s
tem, the excess free-energy per unit area contains a sing
contribution Fp

sing;DT 22aS @with aS50 and 21 for the
model potentials~2! and~6!, respectively@2##. In the nonpla-
nar system, we conjecture that the corresponding quanti
described by the scaling function

DFn
sing5DT22aSW~a DTbS,q DT2n i!, ~8!

whereW(x,y) is the scaling function whose variables corr
spond to the hyperuniversal combination of lengthsca
a/ l p andqj i @9#. Since the singularity in the free-energy

FIG. 3. Free energy from the expression~5! for different values
of a at the transition temperatures~see Fig. 2!. From above,a
55.0, 4.0, 3.5, 3.0, 2.75, and 2.46866. The last value is the cri
valueac within the present approximation.
n

ed
cal
nt

n
l-
s-
lar

is

s

the unbending critical point occurs forDTÞ0, we are imme-
diately led to the prediction for the critical corrugation am
plitude and temperature

ac~q!}q2bS /n i ; DTc~q!}q1/n i ~9!

consistent with our explicit results, provided that for sho
ranged forces we interpretbS /n i as zero and not logarithmic
For this case, we believe that the existence of a finite crit
threshold even in theq→0 limit is a surprising finding of our
work. These scaling ideas can be extended to the inter
structure at the unbending critical point where the hyperu
versal nature of the scaling variablesx andy play an impor-
tant role. Here, we concentrate on systems with long-ran
forces for whichbSÞ0 where the definition of universa
critical amplitudes is more straightforward. We suppose th
in the vicinity of the unbending critical point, the mean in
terface thickness in the nonplanar system is described by
scaling law

l 05 l pLS a

l p
,q j i D , ~10!

whereL(x,y) is a universal scaling function. As a cons
quence, precisely at the unbending critical point, the m
film thicknessl 0

c is a universal multiple of the correspondin
planar adsorption~at the same temperature!. Thus, we define
the universal critical amplitude ratio

R[
l 0
c

l p
at a5ac~q!, DT5DTc~q!, ~11!

which we have numerically determined asR'1.321 ~inde-
pendent ofq! calculated using our MF theory with the bind
ing potential~6!. Note that the definition ofR is equivalent to
the ratio of adsorptions in the nonplanar and planar syste
Other universal critical amplitudes can also be defined.
example, at the unbinding critical point, the shift in the me
interface height relative to the planar system satisfies

FIG. 4. Phase diagram of the unbending transition in a system
short ranged forces for different values ofa/A252.5, 3.0, 4.0 and
5.0, from numerical minimization of Eq.~1! ~continuous lines, left
to right!. The circle represents the unbending critical point forac

'2.914. The loci of critical points obtained from the approxima
model is represented as a broken line. The triangle locates the
cal wetting temperature.
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R8[
l 0

c2 l p~DTc!

ac~q!
~12!

with R8 also independent ofq. The advantage of this defini
tion is that it is also appropriate for systems in whichbS
50(ln). We have numerically determined thatR850.640
and 0.156 for the potentials~2! and ~6!, respectively.

To finish our article, we make two pertinent remark
First, we have established that fora.ac the first-order un-
bending transition also occurs out of the two-phase coex
ence for sufficiently small bulk ordering fieldh̄. The result of
our numerical calculations for short-ranged forces includ
an additionalh̄l term in the binding potential are shown
Fig. 4. The existence of an unbending line extending ou
bulk two-phase coexistence is analogous to prewetting
~planar! first-order phase transitions. Secondly, we have
tablished that unbending also occurs for first-order wett
transitions in nonplanar systems although the scaling be
ior is less obvious. A section of the surface phase diagram
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the (T,h̄) plane thus shows both prewetting and unbend
lines. While this first appears similar to prefilling@1# on a
wedge, there are profound and subtle differences betw
unbending and prefilling relating to the order of these tra
sitions and their relation with wetting@8#. In summary, we
have shown that for nonplanar systems an additional inte
cial phase transition is associated with unbinding. The cr
cal point of the unbending transition exhibits scaling a
observable universal critical properties. Further work sho
concentrate on more general wall shapes, calculations
more microscopic models and also aim to establish whe
the values of the universal critical amplitudes presented h
are substantially affected by including fluctuation effects b
yond mean-field level. At present, simulation studies se
best equipped to answer this latter question although re
malization group analysis may be possible.

C.R. acknowledges economical support fromLa Caixa
and The British Council.
will
or

the

ffi-
er

he
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